# To start, you first need to see the Nvidia graphics card as a GPU on your Windows Server 2019 client,
# here are instructions for Windows Server 2016:
# https://community.esri.com/t5/implementing-arcgis-questions/enabling-gpu-rendering-on-windows-server-2016/td-p/658522
# For a picture, see the Task Manager screenshot here, but don't follow this site past the screenshot:
# https://towardsdatascience.com/setting-up-tensorflow-gpu-with-cuda-and-anaconda-onwindows-2ee9c39b5c44
# Install Anaconda from here:
# https://www.anaconda.com/products/distribution
# After the Anaconda installation follow the steps below, but first here is an informational reference:
# https://conda-forge.org/blog/posts/2021-11-03-tensorflow-gpu/
# In the first two sections of code below, the only real difference is that for the CPU version "tensorflow" is installed,
# and for the gpu version "tensorflow-gpu" is installed.
# ---------- Tensorflow CPU only, no GPU nor TensorRT. (Using the conda-forge package manager.) --------------
# *** The CPU only version does work in R under Windows Server 2019. ***
# See the other markdown doc in this folder for a GPU version that works in R for Windows 10 & 11.
conda create -y -p tf_cpu_only python=3.8
conda env list
conda activate tf_cpu_only
python --version
conda install -y -c conda-forge cudatoolkit=11.2 cudnn=8.1.0
# If versions and builds are not listed below, something went wrong
conda list cudatoolkit
conda list cudnn
# Check CUDA installation
nvcc --version
conda list cuda
conda install tensorflow -c conda-forge
# Find version number of tensorflow (2.10.1)
conda list tensorflow
# Verfiy TensorFlow using a single line submission to python approach
python -c "import tensorflow as tf;print('\n\n\n====================== \n GPU Devices: ',tf.config.list_physical_devices('GPU'), '\n======================')"
python -c "import tensorflow as tf;print('\n\n\n====================== \n', tf.reduce_sum(tf.random.normal([1000, 1000])), '\n======================' )"
# Verfiy TensorFlow using an interactive approach
python
>>>
import tensorflow as tf
print(tf.__version__)
print(tf)
tf.config.list_physical_devices('CPU')
tf.config.list_physical_devices('GPU')
len(tf.config.list_physical_devices('GPU'))
a = tf.constant(7)
b = tf.constant(10)
print(tf.add(a,b))
print(tf.reduce_sum(tf.random.normal([1000, 1000])))
quit()
>>>
conda deactivate
# ----------- Tensorflow GPU works in Python, but not in R. (Using the conda-forge package manager.) ---------------------
conda create -y -p tf_gpu_py python=3.8
conda env list
conda activate tf_gpu_py
python --version
conda install -y -c conda-forge cudatoolkit=11.2 cudnn=8.1.0
conda list cudatoolkit
conda list cudnn
conda install tensorflow-gpu -c conda-forge
# Verfiy TensorFlow - single line approach
python -c "import tensorflow as tf;print('\n\n\n====================== \n GPU Devices: ',tf.config.list_physical_devices('GPU'), '\n======================')"
python -c "import tensorflow as tf;print('\n\n\n====================== \n', tf.reduce_sum(tf.random.normal([1000, 1000])), '\n======================' )"
# Verfiy TensorFlow - interactive approach
python
>>>
import tensorflow as tf
print(tf.__version__)
print(tf)
tf.config.list_physical_devices('CPU')
tf.config.list_physical_devices('GPU')
len(tf.config.list_physical_devices('GPU'))
a = tf.constant(7)
b = tf.constant(10)
print(tf.add(a,b))
tf.reduce_sum(tf.random.normal([1000, 1000]))
quit()
>>>
conda deactivate
# ------------- Mamba Package Manager install - only CPU worked for me ------------------
# Main reference for Mamba:
https://github.com/mamba-org/mamba
# For code see the second Comment 3 by prerakmody here (I'm not sure why there are two Comment 3's.):
https://stackoverflow.com/questions/54271094/conda-install-c-conda-forge-tensorflow-just-stuck-in-solving-environment
conda create -y --name tf_mamba python=3.8
conda env list
conda activate tf_mamba
# Mamba install includes cudatoolkit and cudnn, so there are less steps and a nice interface, but 'tensorflow-gpu' failed
# for me under Windows Server 2019 and Windows 10.
conda install -y -c conda-forge mamba
# mamba install -y -c conda-forge tensorflow-gpu
mamba install -y -c conda-forge tensorflow
# Verfiy TensorFlow - single line approach
python -c "import tensorflow as tf;print('\n\n\n====================== \n GPU Devices: ',tf.config.list_physical_devices('GPU'), '\n======================')"
python -c "import tensorflow as tf;print('\n\n\n====================== \n', tf.reduce_sum(tf.random.normal([1000, 1000])), '\n======================' )"
# Verfiy TensorFlow - interactive approach
python
>>>
import tensorflow as tf
print(tf.__version__)
print(tf)
tf.config.list_physical_devices('CPU')
tf.config.list_physical_devices('GPU')
len(tf.config.list_physical_devices('GPU'))
a = tf.constant(7)
b = tf.constant(10)
print(tf.add(a,b))
quit()
>>>
conda deactivate
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.